Would you like to react to this message? Create an account in a few clicks or log in to continue.

SLİPKNOT TURKEY FAN SİTESİ


Bağlı değilsiniz. Bağlanın ya da kayıt olun

Kaos Nedir ?

Aşağa gitmek  Mesaj [1 sayfadaki 1 sayfası]

1Kaos Nedir ? Empty Kaos Nedir ? Çarş. Haz. 11, 2008 1:38 pm

Misafir

Anonymous
Misafir

Fizikte kaos, özel bir anlamı olan, günlük kullanımdaki anlamından farklı bir anlama sahip bir kelimedir. Bir fizikçi için “kaotik hareket” ifadesi, aslında fiziksel bir sistemin hareketinin görünüşte çılgınca ya da vahşice olmasıyla kesinlikle ilgisizdir. Esasen kaotik bir sistem yumuşak ve düzenli görünümlü bir davranış sergileyerek evrilebilir. Bunun yerine kaos, sistemin davranışı hakkında uzun vadeli doğru tahminlerde bulunmanın mümkün olup olmadığı konusu ile ilgilid ir. Fiziğin 400 yılı boyunca fizik kanunları, doğadaki neden ve sonuç arasındaki tam bağlantıyı yansıttılar. Dolayısıyla yakın zamanlara kadar, başlangıç koşulları yeterince iyi bir şekilde bilindiği takdirde herhangi bir fiziksel sistem hakkında her zaman uzun vadeli doğru tahminler yapılabileceği varsayılıyordu. Doğadaki kaotik sistemlerin yaklaşık yüz yıl kadar önce keşfedilmesi bu anlayışın kökten yıkılmasına neden oldu.
DETERMİNİZMİN FELSEFESİ
Determinizm, her olay veya hareketin, geçmişteki olay veya hareketlerin kaçınılmaz bir sonucu olduğu yönündeki felsefi inanıştır. Dolayısıyla, en azından ilke olarak, her olay veya hareket ileri veya geriye doğru tam olarak öngörülebilir.Maddesel dünyaya dair felsefi bir inanış olarak determinizmin geçmişi en azından binlerce yıl önceki Antik Yunan uygarlığına kadar uzanır.Determinizm M.S. 1500 civarında ise, neden-ve-sonuç kurallarının maddesel düzeydeki tüm hareket ve yapılara hükmettiği fikrinin ortaya konmasıyla modern bilime dahil oldu. Deterministik bilim modeline göre evren, önceden belirlenmiş kurallardan hiç bir sapma ve en küçük bir rasgelelik göstermeden, mükemmel bir makinanın işlemesi gibi zaman içinde kendini gerçekleştirmekteydi. Determinizmin modern bilimin merkezine yerleştirilmesinde en büyük pay sahibi olan kişi, yaklaşık 300 yıl önce İngiltere’de yaşamış olan Isaac Newton’dur. Newton, sadece bir kaç cümle ile ifade edilebilecek özet ilkeler bularak, bunların şaşırtıcı derecede çeşitli sistemlerin hareketlerini büyük bir kesinlikle öngörebileceklerini gösterdi. Bu üç hareket yasasının mantık süreci ile birleştirildiği takdirde, diğer bir çok şeyin yanı sıra, gezegenlerin güneş etrafındaki yörüngelerinin, fırlatılan nesnelerin dünya üzerideki seyir güzergahlarının ve gel-gitlerin aylık veya yıllık döngülerinin doğru bir biçimde öngörülmesinde kullanılabileceğini ortaya koydu. Newton’un yasaları tamamıyla deterministtir çünkü geçmişte olacak herhangi bir olayın tamamen şu anda olan olaylar tarafından belirlendiğini ve hatta şu anda olanların da tamamen geçmişin herhangi bir anında olan bitenler tarafından belirlenmiş olduğunu öngörür. Newton’un üç adet hareket yasası o denli başarılıydı ki, buluşundan yüzlerce yıl sonra bile fizik bilimi büyük bir oranda, bu yasaların neredeyse tüm tasavvur edilebilir fiziksel sistemlerin hareketlerini açıklamakta nasıl kullanılabileceğini göstermekten ibaret olmuştur. Newton’un yasaları 1900’lerde yerlerini daha geniş bir fizik yasaları dizgesine bırakmış olsa da, determinizm bu gün halen fizik biliminin merkezi felsefesi ve amacı durumundadır.
BAŞLANGIÇ KOŞULLARI
M.S. 1500’lü yıllarda modern bilimin doğuşunu sağlayan önemli yeniliklerden birisi, maddesel evrenin yasalarının ancak, fiziksel özellikleri nicel ölçümler şeklinde ifade ederek, yani sadece sözlerle değil, sayılarla ifade etmek yoluyla anlaşılabileceği düşüncesiydi. Fiziksel dünyayı tarif etmekte sayısal nicelikler kullanılması, fizik kurallarının nihai olarak sıradan cümlelerle değil de matematiksel eşitliklerle ifade edilmesi sonucunu getirdi. Örneğin, Newton yasaları kelimelerle halinde ifade edilebilmelerine rağmen, bu yasaları özel bir sisteme uygulamak istendiği takdirde, bu yasaların matematiksel biçimlerinin kullanılması gereklidir. Newton yasaları, herhangi bir andaki ölçümlerin sayısal değerlerini daha sonraki veya önceki değerlerine bağlayan dinamik kanunlarının belki de en önemli örneklerindendir. Newton kanunlarında karşımıza çıkan ölçümler, çalışılan sistemin özelliklerine bağlıdırlar fakat temelde, sistemin tarihindeki herhangi bir an için sistemdeki tüm nesnelerin konumları, hızları ve yönleriyle beraber, bu nesnelere etkiyen tüm kuvvetlerin yönlerini ve güçlerini de ihtiva ederler. İster güneş sistemi, ister dünya üzerinde düşmekte olan bir nesne veya isterse okyanus akıntıları olsun, herhangi bir sistem için uygun olan ölçümleri ifade ederken bir başlangıç zamanındaki ölçüm değerleri, o sistem için “başlangıç koşulları” olarak adlandırılır. Dinamik yasalar olarak Newton yasaları, herhangi bir sistem için aynı başlangıç koşullarının her zaman aynı sonuçları ortaya çıkaracağını söylediği için, deterministtirler.Evrenin Newton’cu modeli genellikle, sonuçların başlangıç koşullarından önceden belirlenmiş bir şekilde, adeta zamanda ileri veya geri doğru oynatılabilen bir film gibi, matematiksel olarak zamanla ortaya çıktığı bir bilardo oyunu şeklinde tasarlanır. Bilardo oyunu örneği, mikroskobik düzeyde moleküllerin hareketlerinin bilardo masasındaki topların çarpışmalarına benzetilebileceği ve her iki durumda da aynı dinamik yaslarının geçerli olduğu göz önüne alındığında yararlı bir benzetmedir.
ÖLÇÜMLERİN KESİNSİZLİĞİ
Deneysel bilimin temel ilkelerinden bir tanesi de, gerçek bir ölçümün hiçbir zaman sonsuz derecede kesin olmayacağı, bir derece kesinliksizlik içeren bir değer olması gerektiği ilkesidir. Her gerçek ölçümde ortaya çıkan bu kesinsizlik, tasavvur edilebilecek herhangi bir ölçüm aracının, mükemmel bir şekilde tasarlanmış ve kullanılıyor olsa bile, yaptığı ölçümleri ancak sonlu bir kesinlikle kaydedebileceği gerçeğinden ortaya çıkar. Bu gerçeği kavramanın bir yolu, sonsuz kesinliğe sahip bir ölçümün kaydedilebilmesi için, ölçüm aracının sonsuz sayıda basamak gösterme kapasitesine sahip olması gerekeceğini düşünmektir. Daha hassas ölçüm cihazları kullanılarak ölçümlerdeki kesinsizlik çoğu zaman belli bir amaç için istenen en az düzeye indirgenebilir fakat kuramsal bir fikir olarak da olsa tamamen ortadan kaldırılamaz. Dinamik bilimi açısından, her gerçek ölçümde bir kesinsizlik bulunması, bir sistem üzerinde çalışılırken başlangıç koşullarının sonsuz duyarlılıkta belirlenemeyeceği anlamına gelir. Newton yasaları kullanılarak yapılan hareket çalışmalarında bir sistemin başlangıç koşullarındaki kesinsizlik küçük de olsa daha sonraki veya önceki bir zamanı tahmin etme sürecinde buna karşılık gelen bir kesinsizliğin ortaya çıkmasına neden olur. Fiziğim modern tarihinin büyük bir kısmı boyunca başlangıç koşulların gittikçe daha duyarlı bir biçimde ölçülebilmesi durumunda nihai dinamik tahminlerdeki kesinsizliğin küçültülebileceği kabul edilmiştir. Dolyısıyla, örneğin bir roketin hareketi incelenirken fırlatma esnasındaki başlangıç koşulları on kez daha hassas olarak belirlendiği takdirde roketin nihai konumu da on kez daha kesin bir biçimde belirlenebilecektir. Dinamik sonuçta mevcut olan kesinsizliğin hareket denklemlerindeki herhangi bir rasgelelikten kaynaklanmadığını –çünkü bunlar tamamıyla deterministtir-, daha ziyade başlangıç koşullarına ilişkin sonsuz bir hassaslık düzeyinin mevcut olmamasından ortaya çıktığını unutmamak gerekir. Deneysel bilimin dile getirilmeyen esas hedefi ölçüm araçları gelişen teknolojinin gittikçe daha duyarlı hale gelmesiyle dinamik yasaların uygulanması ile elde edilen sonuçların doğruluğunun, nihai kesinliğe hiçbir zaman ulaşamasa da ona yaklaştırılarak gittikçe artırılması olmuştur.
DİNAMİK KARARSIZLIKLAR
Determinizm, başlangıç koşulları ve ölçümlerin kesinsizliği terimleriyle anlatılmak istenen kavrandıktan sonra, bir çok fizikçi için kaosla eş anlamlı olan dinamik kararsızlıklar hakkında konuşabliriz. Dinamik kararsızlık bazı fiziksel sistemlerde gözlenen zamana bağlı özel bir davranış biçimidir ve 1900 yılında fizikçi Henri Poincaré tarafından keşfedilmiştir. Poincaré güneşin etrafındaki gezegenlerin hareketleri ile ilgili matematiksel denklemlerle ilgilenen bir fizikçiydi. Gezegenlerin hareketlerine ilişkin denklemler Newton yasalarının bir uygulamasıydı ve bundan dolayı tamamen determinist bir özellikteydi. Bu matematiksel yörünge denklemlerinin determinist olmasının anlamı, tabii ki, başlangıç koşullarının (bu örnekte herhangi bir başlangıç anında gezegenlerin konum ve hızlarının) bilinmesi halinde gezegenlerin gelecekteki veya geçmişteki herhangi bir andaki konum ve hızlarını ortaya çıkarabileğimiz anlamına gelmektedir. Elbette ki, kusursuz ölçüm cihazları kullansak bile herhangi bir ölçümü sonsuz kesinlikte gerçekleştirmek imkansız olduğundan, gezegenlerin başlangıçtaki hız ve konumlarını sonsuz bir kesinlikte ölçme olanağımız yoktur. Dolayısıyla her zaman, Newton yasalarının denklem biçimleri kullanılarak yapılan tüm gökbilimsel tahminlerde küçük de olsa bir hata payı olacaktır. Poincaré’e kadar, o zamanki neredeyse tüm fizikçiler tarafından kabul gören sözsüz bir varsayım sayesinde astronomik tahminlerde sonsuz kesinliğin olmaması küçük bir sorun olarak kabul ediliyordu. Bu varsayıma göre, başlangıç koşullarındaki kesinsizliği –muhtemelen daha duyarlı ölçüm cihazları kullanarak- küçülttüğünüzde, çıkarımlardaki kesinsizlikler de aynı oranda küçültülebilecekti. Başka bir deyişle, Newton yasalarına ne kadar kesin bilgi sağlarsanız, herhangi bir geçmiş veya gelecek zaman ilişkin o denli kesin bir sonuç elde edebilecektiniz.Dolayısıyla, herhangi bir fiziksel sistemin davranışının neredeyse mükemmel tahminlerinin elde edilebilmesinin kuramsal olarak mümkün olduğu varsayılıyordu. Fakat Poincaré, bazı gökbilimsel sistemlerin, başlangıç koşullarına ilişkin kesinsizliği küçültmenin neticedeki kesinsizliği de küçültmesi şeklindeki kurala uymuyor gibi göründüğünü fark etmişti. Matematiksel denklemler üzerinde yaptığı incelemelerle, bazı basit gökbilimsel sistemlerin başlangıç koşulları ve sonuca ilişkin bu “küçült-küçült” kuralına uymalarına rağmen, diğerlerinin uymadığını gördü. Bu kurala uymayan gökbilimsel sistemlerin ortak bir özelliği üç veya daha fazla sayıda birbiri ile etkileşen bileşenden meydana gelmiş olmalarıydı. Bu gibi sistemler için Poincaré, başlangıç koşullarındaki çok küçük bir kesinsizliğin, zamanla çok büyük miktarlarda gelişim gösterdiğini ortaya koydu. Dolayısıyla, aynı sistem için birbirinden neredeyse ayırt edilemeyecek kadar yakın iki farklı başlangıç koşulu dizgesi, birbirlerinde çok farklı iki nihai durum ile sonuçlanabiliyordu. Poincaré, başlangıç koşullarındaki minik belirsizliklerin, nihai durumda çok büyük belirsizlikler olarak “patlama” göstermesi durumunun, başlangıç koşullarındaki kesinsizliğin düşünülebilecek en küçük miktarlara dahi indirilebilmesi halinde aynen devam edeceğini matematiksel olarak göstermiştir. Yani, bu sistemler için, başlangıç koşullarına ilişkin ölçümlerin yüz, hatta milyon kez daha kesin gerçekleştirilmesi halinde bile daha sonraki veya önceki durumlardaki kesinsizlik küçülmeyecek, yine çok büyük olacaktır. Poincaré’in matematiksel çözümlemesinin özü, bu “karmaşık sistem”lerde herhangi bir doğruluk derecesine sahip öngörüler yapabilmek için başlangıç koşullarının sonsuz duyarlılıkta belirlenmesi gerektiğinin bir kanıtıdır. Bu astronomik sistemler için, ne kadar küçük olursa olsun herhangi bir muğlaklık, kısa bir zaman sonra, deteriminist çıkarımların, sadece şansa dayalı tahminlerdekiyle hemen hemen aynı oranda belirsizlik içermesi sonucunu doğuracaktır. Poincaré tarafından çalışılan sistemlerde matematiksel olarak mevcut olan aşırı düzeydeki “başlangıç şartlarına hassas bağlılık”, dinamik kararsızlık, veya kısaca “kaos” olarak anılmaya başlandı. Bir kaotik sistemler ilgili olarak yapılan uzun vadeli matematiksel öngörüler, rasgele şanstan daha doğru olmadığından, hareket denklemleri ancak kısa dönemler için belli bir kesinliğe sahip tahminler yapmamızı sağlamakta. O zamanki bazı ileri görüşlü fizikçiler için Poincaré’in çalışmaları önemli olarak görülmüşse de, keşiflerinin ve bunların uygulamalarının bilim dünyasında tam anlamıyla kabul görmesi için bir çok on yılın geçmesi gerekecekti. Bunun nedenlerinden birisi, fizik camiasının büyük bir çoğunluğunun, fiziğin atomlar alemine uzandığı kuantum mekaniği denen yeni bir fizik alanıyla meşgul olmalarıydı.

Sayfa başına dön  Mesaj [1 sayfadaki 1 sayfası]

Bu forumun müsaadesi var:
Bu forumdaki mesajlara cevap veremezsiniz